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Perturbative, asymptotic and Pade-approximant 
solutions for harmonic and inverted oscillators in a 
box? 

V C Aguilera-Navarro, E Ley KooS: and A H Zimerman 
Instituto de Fisica Tebrica, SBo Paulo, B r a d  

Received 5 March 1980, in final form 30 May 1980 

Abstract. The energy levels of boxed-in harmonic and inverted oscillators are constructed 
from the perturbative and asymptotic solutions that are valid in the limits of small and large 
sizes, respectively. 

In order to obtain expressions for the energy levels which are valid for boxes of any size, 
we use Pad6 approximants constructed as interpolations between the perturbative and 
asymptotic solutions. Special attention is paid to the lowest levels. 

The accuracy and range of validity of each type of solution are illustrated by comparing 
them with the exact solution which is obtained by constructing and diagonalising the matrix 
of the Hamiltonian of the system in the basis of eigenfunctions of the free particle in a box. 

1. Introduction 

The quantum-mechanical problem of the symmetrical quadratic potential in a box was 
solved, for the attractive case, by Consortini and Frieden (1976), while the repulsive 
case was considered more recently by Rotbart (1978). Their method of solution 
consists in using numerical computer techniques. 

We have investigated the same problem with the objective of finding approximate 
analytic expressions for the energy levels. For relatively small sizes the perturbative 
solutions are good, while for relatively large sizes the asymptotic solutions are valid. In 
order to find closed expressions for the energy levels that are valid for boxes of any size, 
we use Pad6 approximants constructed as interpolations between the perturbative and 
asymptotic solutions, which, as already mentioned, are valid for small and large sizes, 
respectively. 

In order to establish clearly the connections between the approximate solutions and 
the exact ones, we start from the Schrodinger equations 

where the plus and minus signs correspond to the attractive and repulsive cases, 
respectively. The energy is measured in units of ha and the unit of distance is 
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b = (mw/h)”‘, in terms of the mass m and frequency w of the system. For a symmetrical 
box of size 2R, the boundary conditions on the wavefunctions are 

$(e= - R/  b) = + ( E  = R/ b)  = 0. (2) 

The symmetry of the potential gives the wavefunctions a definite parity, and allows 
us to work in the half interval 0 s 5 s R/ b, with the additional boundary conditions 

+!+ ( 6  = 0 )  = 0 

+- (6 = 0) = 0 

(3a)  

(3b) 

for positive and negative parity states, respectively. 

M ( a ,  b, z )  as (Abramowitz and Stegun 1965) 
The corresponding exact solutions can be written in terms of the Kummer function 

@+((5)=A e-‘z/2M($(1-2e),&, 6’) (4a) 

@((5)= B e-*z’2.$M(’( 4 3 - 2€),5, E 2 )  (4b) 

for the attractive case and 

+; ( E )  = C e-i*2/2M(-( : 1 + 2ic), i, it’) 

for the repulsive case. 
It is obvious that the boundary conditions related to the parity symmetry (equations 

(3a)  and 3(b)) are satisfied by these functions. On the other hand, the boundary 
condition related to the box, (equation (2)) will determine the energy eigenvalues. 

Another alternative form of an exact formulation of the problem consists in 
constructing and diagonalising the matrix of the Hamiltonian of the system in the basis 
of the free-particle eigenfunctions in a box, namely 

4r)(t) =Jb/R cos[(2n + l)vb5/2R] 

4L-)([) = Jb/R sin[(2n)vbt/2R] 

n = 0, 1 ,2 ,  . . . (6a)  

(6b) n = 1 , 2 , .  . . , 

which also satisfy the boundary conditions, equations (2), (3a)  and (3b) in an obvious 
way. We have performed the numerical solution of this formulation by taking a finite 
number of basis functions and diagonalising the corresponding submatrix of the 
Hamiltonian 

where N and N‘ are both even (=2n)  or both odd (=2n + 1). By changing the 
dimension of the basis sub-space, we can be sure of the convergence and accuracy of the 
energy eigenvalues for a box of a given size. 

In § 2, we develop first the perturbative solutions valid for boxes of small size using 
the same basis of equations (6a)  and (6b). Next we construct the asymptotic solutions 
valid for boxes of large size. For the attractive case, the asymptotic form of Kummer’s 
function in equations (4a) and (4b) with the boundary condition equation (2) leads to 
the corresponding expression for the energy levels for such boxes. For the repulsive 
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case, the same method applied to equations (5a)  and ( 5 b )  shows a slow numerical 
convergence and does not lead to a simple closed expression for the energy levels. 
Alternatively, in § 3, we show that for large boxes, in the repulsive case, the linear 
approximation for the potential is a good starting point for a perturbative asymptotic 
expansion (large R) .  In § 4 we construct the Pad6 approximants for the energy levels 
for boxes of any size by requiring that they tend to the expressions of the small and large 
size limits. 

All these developments are performed especially for the two lowest levels. Of 
course, they can also be performed for higher levels in which case the convergence of 
the procedure is slower. 

In § 5 we present the diagonalisation values obtained from equation ( 7 ) ,  which, 
according to the accuracy of our calculation, can be called exact. 

In 9 6 we give the numerical results obtained from the perturbative, asymptotic and 
Pad6 approximants and compare them with the exact results of § 5. 

2. The perturbative and asymptotic expressions for the energy eigenvalues 

Taking as unperturbed wavefunctions the expressions given in equations (6a) and ( 6 b ) ,  
it is easy to see that each perturbative order of the energy expansion gives an extra R 4  
(from now on, R is measured in units of b ) .  This means that the perturbation expansion 
has R 4  as its perturbative parameter. For instance, the two lower levels, when 
calculated with the help of the Rayleigh-Schrodinger expansion up to third order, are 
given by 

EC’(R)= 1.233 705 5 R-2 f0 -065  345 483 R 2  

-5.922 557 6X R6* 1.611 389 5 X RIO (8) 

- 1.380 406 4 x loe4 R6* 5.450 258 2 x lo-’ RIo. (9)  

E!-’(R)=4*934 802 201 R-2 f0*141  336 308 R 2  

The lower * signs correspond to the two signs which appear in equation (l), while 

The expressions (8) and (9) are valid for sufficiently small R. 
Let us now consider the case of large R for the attractive case. By taking the 

asymptotic expansion of the Kummer functions (Abramowitz and Stegun 1965) which 
appear in equations (4a) and 4(b) and using the boundary conditions equations ( 2 ) ,  it is 
not difficult to see that the energy eigenvalues for large R are given by 

the upper signs correspond to the two parity states. 

/T(k+$)k!  (10) 

/T(k +z)k! (11) 

E!+) = 2k + ; + 2  e-R2 ~ 2 ( 2 k + : )  

E(-) = 2 k + q + 2  e-RZ ~ 2 ( 2 k + : )  

with k = 0, 1 , 2 , .  . . . 
These two last expressions explain why, for the attractive case and for values of R 

which are not too large, the energy eigenvalues tend to 2k +t  and 2k +$ rather rapidly. 
For the repulsive case, as we have already mentioned, the same method applied to 

equations (5a)  and ( 5 b )  with the boundary condition equation (2) shows a slow 
numerical convergence and does not lead to a simple closed expression for the energy 
levels. We will see in the next section that in this case the linear approximation for the 
potential is a good starting point. 
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3. The asymptotic expansion for the energy eigenvalues in the repulsive case 

Let us rewrite equation (1) and the boundary condition equation ( 2 )  in terms o f  the new 
variable l = 5 + R : 

and 

$(( = 0 )  = 0.  

The eigensolutions of 

(17) 0 = 2 - 1 / 3 ~ 2 / 3 ~ ,  
E ,  

and Ai is the Airy function whose zeros a, are given by Abramowitz and Stegun (1965). 
In equation (1 5), N, is a normalisation factor. 

Considering the term -$12 in equation (12)  as a ‘perturbation’, the first-order 
energy correction is given by the matrix element 

The expression for this can be found in Castilho-Alcarhs and Leal-Ferreira (1975) and 
it gives the contribution 

AE:’)  = - 4(2R)-”’a;/ 15. (18) 

Now, for the second-order correction 

At-‘,2)=r-i  (4s 15’1 4 m  )(+m I 121 4s) 
0 0  , 

m f s  Em - E ,  

which, by using the matrix elements given in the appendix, can be written as 

A . E $ ~ ) = - ~ ~ R - ~  C (u,-u,)-~.  
m f s  

therefore, up to second order, equations (17), (18) and (19) give the following 
expansion for E :  

1 2  
E ,  = -3R -2- ’ /3R2i3a , -&a~(2R)-2 /3-72R-2  ( a , - ~ , ) - ~ .  (20)  

m Z s  
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Strictly speaking, the matrix elements we should calculate are of the form 
j,’” ~Ptl’& dl .  But for large R, CPS decays exponentially and therefore the expansion 
given in equation (20) is valid up to terms which decay exponentially for large R. 

Let us recall that in this approximation the even and odd states are degenerate. 

4. Pade approximants 

With the expressions (8) and (9) valid for small R and expressions ( lo) ,  (11) as well as 
(20) valid for large R ,  we can construct the two-point Pad& approximants (Baker 1975) 
which interpolate the large and small box sizes. 

For the harmonic potential we have first considered the one-point Pad& approxi- 
mants [2/5] and [3/4] constructed for R2(Ey’(R)-4)  and R’(EL-)(R)--$), where for 
small R we use for E$+’ and E:-) the expansions given by equations (8) and (9). These 
functions go to zero for R + cc and this determines the choice of one-point Pad& 
approximants with the numerator of smaller degree than the denominator. 

In this way, we obtain approximate expressions for ET’ and E$-) valid for any value 
of R. For instance, with the help of the [3/4] Pad6 approximants, we have 

(2 1) E(+) +[3/41(R) = R-’[3/4]!+’+$ 

E(t?:,41(R) = R-2[3/4]\-’+$ (22) 
where 

with 

ay’ = 1.233 700 55 

U?’ = -7,279 082 1 X lo-’ 

U?) =0*131651 36 

U?’ = -7,710 010 5 x 

by’ =-0.184 735 44 

b?) = -2.112 493 2 x IO-* 

b?’ = -5.026 219 6 x 

bk‘“ = 4.380 602 3 X 

ab-’ = 4.934 802 201 

U\-’ = -1.835 159 3 

U;-) = 1.922 875 1 X lo-’ 

a$-) = -3.139 434 7 X lop3 

bl-’ = -6.791 747 0 X lo-’ 

b;-’ =-1.031 957 7 X lo-’ 

(24) 

b$-) = -1.827 751 2 x 

bi-’ = -1.469 584 1 x 

With equations (8) and (9) valid for small R and the asymptotic behaviour 
E!+’ --+ 4 and EL-) - $, respectively, for the two lowest levels in the case of the 

harmonic potential, we have constructed the two-point Pad6 approximants for this case, 
namely 

where 

R-w R+O2 

E!;k//3](R) = R-’[4//3]!1’(~) z = R 2  

4 3 
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with 

U:’ = 1.233 700 55 

a y )  =0*322 774 61 

ay’ =9.891 158 4X 

ay’ = 2.002 187 3 x lo-’ 

a:“’ = 1.185 644 16 x lop3 

b(+) 1 = 0,26163124 

br’  = 2.720 769 7 X 

by’ = 2.371 283 2 

ad-’ = 4,934 802 201 

ai-’ = 2.705 455 087 

U$-) = 2.741 385 9 X lo-’  

U$-) ~ 8 . 8 1 5  545 7 X 

ai-’ = 3.245 668 7 X 

bi-’ = 5.481 790 3 X lo-’ 

b$-) = 2.691 135 6 X lo-’ 

b$-’ = 2.163 779 2 x 

(26) 

For the inverted potential, with the help of expansions (8) and (9) and the asymptotic 
expansion (20), we have constructed the two-point [8//5] Pad6 approximant for 
€ ( U )  = R’E(R),  where o = R4’3. Therefore E?)(R)  can be approximated by 

where 

U:) = 1.233 700 55 

a‘+’ 1 = -5.586 822 3 

ay ’  = 3.123 773 x 

u g )  = 6.904 162 5 x lop5 

ay ’  = 0.125 021 77 bj‘“ = -4.528 507 547 

u F )  = -9.891 159 2 X by’ = -0.101 338 830 7 (28) 

a:“’ = 0.287 577 643 b:‘” = -2,720 766 3 X lo-’ 

ay’ = 6.451 681 5 x 

a g )  = 1.185 642 1 x 

b:“’ = -6.760 043 9 x lop3 

by’ = -1.380 832 5 x 

for the lowest even state and 
i 

ab-’ = 4.934 802 201 

a\-’ = -10,318 409 51 

a$-’ = -0,896 665 61 

U$-’ = -0.160 820 45 b$-’=-1.8170244X10-2 (29) 

ai-’ 0.291 376 99 

ai-’ = 2.533 606 x 
ai-’ = 4.199 977 1 x 

U$-) = 4.074 906 2 x 

U:-) = 3.496 635 7 X 

b1-I = -2,090 946 929 

bi-’ = -3.948 299 7 X lop3  

bi-’ = -8.409 368 6 X lop4  

bi-) = -6.993 271 5 X 

for the lowest odd state. 
In the next section, we will discuss the results. 
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Table 1. Odd parity levels for the attractive case. 

R = 0.5 R = l  R = 2  

19.774 534 178 560 
78.996 921 150 976 

177.693 843 822 080 
315.868 612 673 536 
493.521 634 054 144 123,535 750 10 31.507 799 34 
710.653 008 064 512 177.818 871 88 45.078 973 32 
967.262 768 984 064 241.971 479 61 61.117 342 67 

5,075 582 014 976 1.764 816 438 592 
5,584 639 078 1 

11.764 982 120 9 
20.403 520 681 

19499  696 499 3 
44.577 171 227 1 
79.121 980 850 6 

1263.350931 234 816 315.993 628 7 79,623 013 2 
1598.917 501 620 224 399.885 345 7 100.596 030 4 
1 973.962 483 650 560 493.646 644 4 124.036 416 2 

R = 3  R = 4  R = 5  R = 6  

1,506 081 527 088 
3,664 219 644 
6.473 336 615 

10,303 784 984 
15,229 386 19 
21.254 763 56 
28,378 893 60 
36.600 930 3 
45.920 381 1 
56.336 962 4 

1.500 014 602 7 
3.501 691 537 
5.539 421 796 
7.793 679 610 

10.533 684 47 
13.884 832 24 
17.865 148 3 
22,471 738 3 
27.701 207 2 
33,551 393 2 

1,500 000 003 5 
3.500 001 22 
5.500 098 71 
7,502 927 99 
9.536 572 97 

11,713 115 18 
14,196 985 9 
17.078 643 2 
20,375 071 6 
24.082 613 1 

1.499 999 999 
3.499 999 99 
5.500 000 01 
7.500 001 26 
9.500 049 95 

11,501 056 82 
13.512 296 7 
15.579 546 9 
17.804 214 
20.283 577 

Table 2. Even parity levels for the attractive case 

R = 0.5 R = l  R = 2  

4,951 129 323 264 
44.452 073 828 864 

123.410 710 456 832 
241.846 458 758 144 
399.760 332 976 128 
597.152 524 107 776 
834,023 089 029 120 

1 110.372 049 494 016 
1426.199415 111 680 
1781.505 191 022 592 

1.298 459 831 928 
11.258 825 780 608 
31.005 254 50 
60.616 003 72 

100.095 210 78 
149.443 630 75 
208.661 485 54 
277.748 859 4 
356,705 790 1 
445.532 296 7 

~ ~ ~ ~~~ 

0.537 461 209 21 
3.399 788 240 
8.368 874 427 

15,776 195 797 
25.647 333 71  
37.984 998 13 
52,789 749 77 
70.061 761 6 
89,801 101 8 

112.007 801 3 

R = 3  R = 4  

0,500 391 082 8 
2,541 127 258 
4.954 180 470 
8.252 874 649 

12.629 087 15 
18.104 660 9 
24.679 547 4 
32,352 710 8 
41.123 500 2 
50.991 543 0 

0.500 000 490 7 
2.500 201 179 5 
4.509 640 989 
6.621 124 01 
9.091 013 12 

12.130 692 55 
15.796 449 6 
20.090 402 2 
25.008 773 3 
30.548 807 3 

R = 5  

0.499 999 999 9 
2.500 000 083 

10.596 191 58 
4.500 012 63 
6.500 602 35 
8.511 471 3 

12.908 515 1 
15.586 086 7 
18.675 121 7 
22.177 796 6 

R = 6  

0.499 999 999 8 
2.499 999 998 
4.500 000 00 
6.500 000 15 
8.500 008 6 

10.500 247 7 
12.503 883 2 
14.533 593 4 
16.664 950 5 
19.008 265 4 
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5. Exact numerical results 

We wish to consider first the variational method, with the trial functions given by 
equations (6a)  and ( 6 b ) ,  which corresponds to the diagonalisation of the Hamiltonian 
matrix whose elements are given explicitly by equation (7). This is done for several 
values of R and the corresponding first ten eigenvalues are shown in the tables 
presented below. The matrix dimension was varied in such a way to guarantee the 
convergence of the eigenvalues up to the precision shown in the tables. 

In table 1 we give the results for the odd parity levels in the attractive case. These 
correspond to the case studied by Consortini and Frieden (1976). In table 2 we give the 
results for the even parity states with the boundary condition given by equation (3a) .  In 
tables 3 and 4 we give the corresponding results for the repulsive case, which 
correspond to the case studied by Rotbart (1978). 

Table 3. Odd parity levels for the repulsive case. 

R = 0.25 R = 0.5 R = l  

78.948 001 548 800 
3154317 319 989 248 
710,601 276 137 472 

1 263.299 045 601 280 
1973,910 526 857 216 
2 842.435 694 755 840 
3 868,874 540 777 472 
5 053,227 061 379 072 
6 395.493 254 660 096 
7 895,673 119 768 576 

19.703 865 990 976 
78,916 754 105 856 

177,611 917722 112 
315,786 070 904 832 
493.438 807 326 720 
710.570 026 545 152 
967.179 694 153 728 

1 263.267 795 824 640 
1598434  324 635 648 
1973,879276953600 

4,792 906 633 984 
19.579 030 856 960 
44.249 466 992 
78.791 813 795 

123.204 443 176 
177486 945 78 
241.639 180 17 
315.661 086 9 
399.552 637 8 
493.313 817 6 

R'= 1.5 R = 2  R = 2.5 R = 3  

1.868 810 529 6 
8,414 065 072 

19,371 676 57 
34.721 196 19 
54.458 889 17 
78,583 755 59 

107.095 440 24 
139.993 791 86 
177.278 737 3 
218.950 237 8 

0,631 464 302 0 
4.304 526 925 

10.454 316 14 
19.082 846 12 
30.182 557 78 
43,751 259 14 
59.788 138 57 
78.292 842 1 
99.265 196 1 

122.705 107 4 

-0,238 320 840 7 
2,202 110 434 
6,106 763 45 

11.616 438 55 
18.713 974 50 
27,394 380 70 
37.655 777 15 
49.497 330 1 
62.918 625 6 
77.919 439 4 

-1,150 858 051 
0.883 199 16 
3 3 3 4  573 36 
7,332 137 15 

12.246 847 95 
18.266 867 17 
25,387 834 67 
33,607 817 9 
42.925 852 5 
53.341 413 

R = 3.5 R = 4  R = 5  R = 6  R = 7  

-2.297 205 13 
-0.122 202 07 

1.806 095 48 
4.535 361 78 
8.116 430 73 

12.522 449 19 
17.743 676 86 
23.775 861 2 
30.616 885 3 
38.265 596 2 

-3.725 604 46 
-1.166 966 52 

0.546 767 45 
2.540 498 01 
5.223 984 99 
8.564 768 0 

12.542 000 4 
17.146 881 0 
22.375 079 
28.224 242 

-7.410 033 4 
-4,100 476 2 
-1.801 833 3 
-0.148 343 9 

1.400 891 0 
3.387 419 7 
5.841 030 9 
8.727 628 1 

12.031 321 
15.743 896 

-12,165 371 
-8.218 631 
-5.302 762 
-3.011 173 
-1.215 914 

0.198 119 
1,674 764 
3.512 557 
5.6950 072 
8.193 245 

-17.970 791 
-13.451 54 
-10.015 48 

-7.202 35 
-4.841 94 
-2.858 64 
-1.228 97 

0.097 99 
1.448 84 
3,085 93 
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Table 4. Even parity levels for the repulsive case. 

R = 0.25 R = 0.5 R = l  

19.735 124 564 992 
177.643 166 202 368 
493.470 056 722 432 
967.210 943 868 928 

1 598.865 574 494 208 
2 388.433 900 699 648 
3 335.915 908 333 568 
4 441,311 591 923 712 
5 704,620 948 979 712 
7 125.843 978 280 152 

4.918 456 569 664 
44.374 369 462 272 

123.329 403 544 576 
241,764 159 310 848 
399,677 625 073 664 
597.069 609 463 808 
833.940 055 457 792 

1110,288 941 318 144 
1426.116 257 071 104 
1 7 8 1 ~ 4 2 1  998 018 560 

~~~ 

1.167 756 672 152 
10.948 019 878 
30.680 027 470 
60.286 805 974 
99.764 379 192 

149.111 972 13 
208,329 351 26 
277,416 426 74 
356.373 158 0 
445,199 524 7 

R = 1.5 

0,394 174 138 9 
4.586 822 478 

13,343 368 817 
26,497 796 905 
44.041 608 350 
65,972 955 23 
92,291 257 75 

122,996 288 36 
158.087 943 3 
197,566 169 8 

R = 2  

0.002 263 391 3 
2.168 354 461 
7.068 585 566 

14.459 431 801 
24,323 993 505 
36.658 351 74 
51.461 204 82 
68,732 025 80 
88.470 569 8 

110.676 7 11 0 

R = 2.5 

-0.422 041 453 5 
0.898 556 498 
3.951 576 435 
8.662 548 655 

14.967 153 25 
22,856 473 30 
32.327 521 37 
43,379 066 14 
56.010 527 0 
70.221 602 3 

R = 3  

-1.170473 175 
0.200 106 508 
2,066 066 919 
5,292 329 665 
9.650 876 18 

15.119 052 66 
21,689 885 75 
29.360 523 8 
38.129 618 5 
47,996 465 0 

R = 3.5 R = 4  R = 5  R = 6  R = 7  

-2,297 879 31 
-0.319 978 30 

0,815 555 93 
0.306 128 732 
6,221 751 38 

10.217 127 09 
15.031 499 83 
20,658 562 9 
27.095 355 5 
34.340 329 8 

-3.725 613 23 
-1.182 241 9 

0,074 039 0 
1.465 416 6 
3.797 839 9 
6,813 958 5 

10.474 530 8 
14.766 3197 
19,683 243 3 
25.222 142 3 

-7.410 033 4 
-4,100 478 3 
-1,803 959 6 
-0,315 260 5 

0.65 1 960 6 
2,333 055 8 
4.558 579 9 
7,231 459 

10.327 963 
13.836 848 

-12,165 371 
-8,218 631 

-10,015 48 
-3.01 1 223 
-1.226 497 
-0,083 184 

0.922 708 
2,548 068 
4,563 018 
6.905 836 

-17,970 79 
-13.451 54 
-10.015 48 

-7,202 35 
-4.841 94 
-2.858 72 
-1,238 43 
-0,134 97 

0.780 79 
2.230 29 

For all values of R considered, we diagonalise matrices of dimension 35 X 35, 
although for radius up to R = 1, lower dimension matrices give the same precision 
shown in tables 1-4, in particular for the lower energy levels. For instance, 15- 
dimensional matrices already give the same precision shown in table 4 for the first nine 
levels in the case R = 0.25, and for the first eight levels in the case R = 0.5. 

In each case we have concentrated our attention on the first ten levels only. 
We note that Consortini and Frieden (1976) only considered the odd parity states 

which correspond to the boundary condition equation ( 3 b ) .  

6. Results from the perturbative, asymptotic and Pad6 approximants 

In table 5 we give the numerical results for the two lowest energies obtained from the 
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perturbative expansions (8) and (9). By comparison with tables 1-4, we see that the 
perturbative expansions (8) and (9) give very good results up to R - 1.0. 

For the harmonic potential expressions (10) and (1 1) are reasonable for the lowest 
levels ( n  = 0,1 ,2)  for R 3 3, R 3 4 and R 2 5, respectively, if we compare them with the 
values given in tables 1 and 2. 

In table 6, we give the values of the first four levels obtained from the asymptotic 
expression (20) obtained for the repulsive case. We see by comparison with tables 3 and 
4 that we obtain reasonable results even for the higher levels (the exception being those 
levels whose energy is close to zero, where large cancellations occur). If we introduce 
higher-order corrections to equation (20) we will improve the results. 

In table 7 ,  we give the numerical results obtained from the one-point PadC 
approximants [2/5] and [3/4] and the two-point PadC approximants [4//3] for the two 
lowest levels of the harmonic potential. They are described in § 4 (see equations (21), 
(22), (23) and ( 2 5 ) ) .  

Table 5. Perturbative values for the two lowest levels in the attractive and repulsive cases. 

0.25 19.735 125 78,948 602 
0.5 4.951 129 19.774 540 4.918 457 19.703 873 
1.0 1,298469 5,076 001 1.167 746 4.793 327 
2.0 0.548403 1.790 769 0.007 36 0,065 9 
3.0 1.244942 1,751 890 1,834 3 -0.856 5 

Table 6. Values of the first four levels in the repulsive case obtained from the asymptotic 
expansion (10). 

5 -7.406 62 -4.067 7 -1,670 87 0.174 38 
6 -12.163618 -8.202 7 -5.243 70 -2.855 7 
7 -17,96978 -13.442 6 -9.983 60 -7.122 58 

Table 7. Numerical results obtained from the one-point Pad6 approximants [ 2 / 5 ] ,  [3/4] 
and the two-point Pad6 approximants [4//3] for the two lowest levels in the attractive case. 

0.5 
1 .o  
2.0 
3.0 
4.0 
5.0 
6.0 

10.0 
50.0 

100.0 

4.951 129 4,951 129 19,774 534 19.774 534 
1.298 469 1.298 470 5.075 595 5.075 596 
0.556 250 0.531 791 1.786 651 1.787 456 
0.486 835 0 6 0 3  420 1.425 783 1.430 954 
0.495 493 0,509 144 1.457 521 1.462 402 
0.498 653 0.508 278 1.482 623 1,487 034 
0,499 570 0,505 926 1.493 123 1.496 669 

1.499 718 1.500 839 
1,500 000 1.500 003 

1,500 000 

4,951 129 19.774 534 
1.298 467 5,075 591 
0,540 352 1.768 742 
0.526 426 1.571 321 
0.547 220 1.695 013 
0.550 096 1.768 884 
0.544 950 1.778 117 
0.522 777 1.670 500 
0,501 077 1.508 750 
0.500 271 1 6 0 2  203 
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By comparison with the exact results given in tables 1 and 2 we note that for both 
parity levels up to R - 3, the results of the three Pad6 approximants are reasonable. For 
R 2 4 the one-point approximants are better than the two-point Pad6 approximants. 

Finally, in table 8 we give the numerical results for the two lowest levels of the 
repulsive case with the help of the two-point Pad6 approximants [ 8 / / 5 ]  given in equation 
(27). We see that in this case, by comparison with the exact results given in tables 3 and 
4, the two-point Pad6 approximants [8/ /5]  gives good results for R S 1.5. But as we 
have seen before, the perturbative expansions (8) and (9) also give good results. 

For R 5 1-5,  the results are bad and for R 2 4 the asymptotic expansion (20) gives 
much better results. 

Table 8. Numerical results for the two lowest levels in the repulsive case obtained from the 
two-point Pad6 approximants [8//5]. 

0.25 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
5.0 
6.0 
7.0 

19,735 124 
4.918 567 
1.167 768 
0.394 722 
0.001 146 

-0.338 964 
-0,801 086 
-1.484 170 
-2.476 461 
-5378 020 

-10.175 779 
-16.087 84.5 

78.948 00 
19.703 873 
4.793 328 
1.873 682 
0.659 713 

-0.126 107 
-0.817 367 
-1.554 76 
-2.428 767 
-4.876 731 
-8.621 726 

-13.866 24 
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Appendix 

Consider the equation 

for two values of E, El and E?, with the correspondingeigenfunctions 4* and &. Let us 
multiply the equation for c#q by lk4b and the equation for 42 by lk4 \ ,  integrate and sum 
both of them. In this way, we obtain 
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For k # 0, after integration by parts, we obtain 

k I: fk-'4i4i df 
m 

= 2(k + 1)R lo fk4142 d f + 2  [ fk (E24;42  +E1414h)  d5 (A.3) 

It is easy to show that the following identities hold (for k # 0): 

fk-'4i4h df  

m m 

=fk-'4i4h I - ( k - l )  1 fk-2414h df+2E2.&-1-2R&,  (A.5) 
0 0 

where we have introduced the notation 
m 

A k  = lo fk4142 df. 

Expressions (A.4) and (A.5) are obtained by means of integration by parts and use of 
equation (A.1). 

Summing equations (A.4) and (A.5) we obtain 

Introducing equation (A.6') in equations (A.4') and (A.57, we obtain 

We have used the fact that the brackets in equation (A.6) vanish. 
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Introducing equations (A.6), (A.7) and (A.8) in equation (A.3), we obtain 

valid for k a 3. 
Similar relations to equation (A.9) have been obtained by Banerjee (1977), who 

used an operational method in order to derive them. Note, however, that his matrix 
elements are defined by integration over the whole interval (-CO, +CO) while ours are on 
the half interval (0 ,  CO). 

Although for the derivation above we have used the fact that k 2 3, it is easy to see 
that by using the same steps, equation (A.9) holds for k = 1 , 2  also (by considering J t l - k ,  

finite with k'  = 0 ,1 ,2 ,  . . .). For instance, for k = 1, we have 

for E2 f E,.  Recall that in this case Jllo = 0. 
Now equation (A.2) for k = 0 gives 

and equations (A.5) and (A.6) for k = 2 give 

6 l4i+; d l =  -6 4,44 d5+2E2Jtl1-2RJtl2. 

Summing these last two equations, we have 

l4\4; d l=(E l+E2)&-2RJ t l~ ,  

which, when introduced in equations (A.4) and (AS),  produces 

[ 4\42 d l  = (E, - Ez)JUI 

lorn 414; d l =  (E2-EdJtl1. 

Introducing these expressions in equation (A . l  l ) ,  we obtain 

(A.lO) 

(A. 11) 

(A.12) 

(A. 13) 

(A.14) 

(A.15) 

Ai= - 4; (014; ( 0 ) / 2 ( E i - E ~ ) ~ .  (A.16) 

For El = E2 (and 41 = c $ ~  = +), equation (A.15) give jrc$'+ d l  = 0, and equation 
(A. 11) reduces to 

(A.17) 
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Putting 

6 ( 5 )  = N, Ai(l/a - 2a2e;), 

with a-3  = 2R, a,= -2a2e;, we obtain from equation (A.17) 

Ai2(x) dx = [A'i(as)I2, 

which was found by Castilho-Alcar6s and Leal-Ferreira (1975). 
Expression (A.lO) gives 

and from (A.16), (A.17) and (A.19) we have 

- N,N,, Ai(as) Ai(as,) - 
2a2(& - E ; ) 2  

= -2a -3(& - E ; ) - 2 .  
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