Perturbative, asymptotic and Pade-approximant solutions for harmonic and inverted oscillators in a box

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1980 J. Phys. A: Math. Gen. 133585
(http://iopscience.iop.org/0305-4470/13/12/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:41

Please note that terms and conditions apply.

Perturbative, asymptotic and Padé-approximant solutions for harmonic and inverted oscillators in a box \dagger

V C Aguilera-Navarro, E Ley Koo \ddagger and A H Zimerman
Instituto de Física Teórica, São Paulo, Brasil

Received 5 March 1980, in final form 30 May 1980

Abstract

The energy levels of boxed-in harmonic and inverted oscillators are constructed from the perturbative and asymptotic solutions that are valid in the limits of small and large sizes, respectively.

In order to obtain expressions for the energy levels which are valid for boxes of any size, we use Padé approximants constructed as interpolations between the perturbative and asymptotic solutions. Special attention is paid to the lowest levels.

The accuracy and range of validity of each type of solution are illustrated by comparing them with the exact solution which is obtained by constructing and diagonalising the matrix of the Hamiltonian of the system in the basis of eigenfunctions of the free particle in a box.

1. Introduction

The quantum-mechanical problem of the symmetrical quadratic potential in a box was solved, for the attractive case, by Consortini and Frieden (1976), while the repulsive case was considered more recently by Rotbart (1978). Their method of solution consists in using numerical computer techniques.

We have investigated the same problem with the objective of finding approximate analytic expressions for the energy levels. For relatively small sizes the perturbative solutions are good, while for relatively large sizes the asymptotic solutions are valid. In order to find closed expressions for the energy levels that are valid for boxes of any size, we use Padé approximants constructed as interpolations between the perturbative and asymptotic solutions, which, as already mentioned, are valid for small and large sizes, respectively.

In order to establish clearly the connections between the approximate solutions and the exact ones, we start from the Schrödinger equations

$$
\begin{equation*}
H \psi(\xi)=\left(-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \xi^{2}} \pm \frac{1}{2} \xi^{2}\right) \psi(\xi)=\epsilon \psi(\xi) \tag{1}
\end{equation*}
$$

where the plus and minus signs correspond to the attractive and repulsive cases, respectively. The energy is measured in units of $\hbar \omega$ and the unit of distance is

[^0]$b=(m \omega / \hbar)^{1 / 2}$, in terms of the mass m and frequency ω of the system. For a symmetrical box of size $2 R$, the boundary conditions on the wavefunctions are
\[

$$
\begin{equation*}
\psi(\xi=-R / b)=\psi(\xi=R / b)=0 \tag{2}
\end{equation*}
$$

\]

The symmetry of the potential gives the wavefunctions a definite parity, and allows us to work in the half interval $0 \leqslant \xi \leqslant R / b$, with the additional boundary conditions

$$
\begin{align*}
& \psi_{+}^{\prime}(\xi=0)=0 \tag{3a}\\
& \psi_{-}(\xi=0)=0 \tag{3b}
\end{align*}
$$

for positive and negative parity states, respectively.
The corresponding exact solutions can be written in terms of the Kummer function $M(a, b, z)$ as (Abramowitz and Stegun 1965)

$$
\begin{align*}
& \psi_{+}^{\mathrm{a}}(\xi)=A \mathrm{e}^{-\xi^{2} / 2} M\left(\frac{1}{4}(1-2 \epsilon), \frac{1}{2}, \xi^{2}\right) \tag{4a}\\
& \psi_{-}^{\mathrm{a}}(\xi)=B \mathrm{e}^{-\xi^{2} / 2} \xi M\left(\frac{1}{4}(3-2 \epsilon), \frac{3}{2}, \xi^{2}\right) \tag{4b}
\end{align*}
$$

for the attractive case and

$$
\begin{align*}
& \psi_{+}^{\mathrm{T}}(\xi)=C \mathrm{e}^{-\mathrm{i} \xi^{2} / 2} M\left(\frac{1}{4}(1+2 \mathrm{i} \epsilon), \frac{1}{2}, \mathrm{i} \xi^{2}\right) \tag{5a}\\
& \psi_{-}^{\mathrm{T}}(\xi)=D \mathrm{e}^{-\mathrm{i} \xi^{2} / 2} \xi M\left(\frac{1}{4}(3+2 \mathrm{i} \epsilon), \frac{3}{2}, i \xi^{2}\right) \tag{5b}
\end{align*}
$$

for the repulsive case.
It is obvious that the boundary conditions related to the parity symmetry (equations (3a) and $3(b)$) are satisfied by these functions. On the other hand, the boundary condition related to the box, (equation (2)) will determine the energy eigenvalues.

Another alternative form of an exact formulation of the problem consists in constructing and diagonalising the matrix of the Hamiltonian of the system in the basis of the free-particle eigenfunctions in a box, namely

$$
\begin{array}{lr}
\phi_{n}^{(+)}(\xi)=\sqrt{b / R} \cos [(2 n+1) \pi b \xi / 2 R] \quad n=0,1,2, \ldots \\
\phi_{n}^{(-)}(\xi)=\sqrt{b / R} \sin [(2 n) \pi b \xi / 2 R] \quad n=1,2, \ldots, \tag{6b}
\end{array}
$$

which also satisfy the boundary conditions, equations (2), (3a) and (3b) in an obvious way. We have performed the numerical solution of this formulation by taking a finite number of basis functions and diagonalising the corresponding submatrix of the Hamiltonian

$$
\begin{align*}
\langle N| H\left|N^{\prime}\right\rangle= & {\left[\frac{N^{2} \pi^{2}}{8}\left(\frac{b}{R}\right)^{2} \pm\left(\frac{1}{6}-\frac{1}{N^{2} \pi^{2}}\right)\left(\frac{R}{b}\right)^{2}\right] \delta_{N^{\prime} N} } \\
& \pm(-1)^{\left(N-N^{\prime}\right) / 2}\left(1-\delta_{N^{\prime} N}\right) \frac{16 N^{\prime} N}{\pi^{2}\left(N^{2}-N^{\prime 2}\right)^{2}}\left(\frac{R}{b}\right)^{2} \tag{7}
\end{align*}
$$

where N and N^{\prime} are both even $(=2 n)$ or both odd ($=2 n+1$). By changing the dimension of the basis sub-space, we can be sure of the convergence and accuracy of the energy eigenvalues for a box of a given size.

In § 2, we develop first the perturbative solutions valid for boxes of small size using the same basis of equations $(6 a)$ and ($6 b$). Next we construct the asymptotic solutions valid for boxes of large size. For the attractive case, the asymptotic form of Kummer's function in equations ($4 a$) and ($4 b$) with the boundary condition equation (2) leads to the corresponding expression for the energy levels for such boxes. For the repulsive
case, the same method applied to equations ($5 a$) and ($5 b$) shows a slow numerical convergence and does not lead to a simple closed expression for the energy levels. Alternatively, in §3, we show that for large boxes, in the repulsive case, the linear approximation for the potential is a good starting point for a perturbative asymptotic expansion (large R). In $\S 4$ we construct the Padé approximants for the energy levels for boxes of any size by requiring that they tend to the expressions of the small and large size limits.

All these developments are performed especially for the two lowest levels. Of course, they can also be performed for higher levels in which case the convergence of the procedure is slower.

In § 5 we present the diagonalisation values obtained from equation (7), which, according to the accuracy of our calculation, can be called exact.

In § 6 we give the numerical results obtained from the perturbative, asymptotic and Padé approximants and compare them with the exact results of § 5 .

2. The perturbative and asymptotic expressions for the energy eigenvalues

Taking as unperturbed wavefunctions the expressions given in equations ($6 a$) and ($6 b$), it is easy to see that each perturbative order of the energy expansion gives an extra R^{4} (from now on, R is measured in units of b). This means that the perturbation expansion has R^{4} as its perturbative parameter. For instance, the two lower levels, when calculated with the help of the Rayleigh-Schrödinger expansion up to third order, are given by

$$
\begin{align*}
E_{ \pm}^{(+)}(R)= & 1.2337055 R^{-2} \pm 0.065345483 R^{2} \\
& \quad-5.9225576 \times 10^{-4} R^{6} \pm 1.6113895 \times 10^{-5} R^{10} \tag{8}\\
E_{ \pm}^{(-)}(R)= & 4.934802201 R^{-2} \pm 0.141336308 R^{2} \\
& -1.3804064 \times 10^{-4} R^{6} \pm 5.4502582 \times 10^{-7} R^{10} . \tag{9}
\end{align*}
$$

The lower \pm signs correspond to the two signs which appear in equation (1), while the upper signs correspond to the two parity states.

The expressions (8) and (9) are valid for sufficiently small R.
Let us now consider the case of large R for the attractive case. By taking the asymptotic expansion of the Kummer functions (Abramowitz and Stegun 1965) which appear in equations ($4 a$) and $4(b)$ and using the boundary conditions equations (2), it is not difficult to see that the energy eigenvalues for large R are given by

$$
\begin{align*}
& E_{+}^{(+)}=2 k+\frac{1}{2}+2 \mathrm{e}^{-R^{2}} R^{2\left(2 k+\frac{1}{2}\right)} / \Gamma\left(k+\frac{1}{2}\right) k! \tag{10}\\
& E_{+}^{(-)}=2 k+\frac{3}{2}+2 \mathrm{e}^{-R^{2}} R^{2\left(2 k+\frac{3}{2}\right)} / \Gamma\left(k+\frac{3}{2}\right) k! \tag{11}
\end{align*}
$$

with $k=0,1,2, \ldots$.
These two last expressions explain why, for the attractive case and for values of R which are not too large, the energy eigenvalues tend to $2 k+\frac{1}{2}$ and $2 k+\frac{3}{2}$ rather rapidly.

For the repulsive case, as we have already mentioned, the same method applied to equations ($5 a$) and ($5 b$) with the boundary condition equation (2) shows a slow numerical convergence and does not lead to a simple closed expression for the energy levels. We will see in the next section that in this case the linear approximation for the potential is a good starting point.

3. The asymptotic expansion for the energy eigenvalues in the repulsive case

Let us rewrite equation (1) and the boundary condition equation (2) in terms of the new variable $\zeta=\xi+R$:

$$
\begin{equation*}
\left(-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \zeta^{2}}+R \zeta-\frac{1}{2} \zeta^{2}\right) \psi(\zeta)=\left(\epsilon+\frac{1}{2} R^{2}\right) \psi(\zeta) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(\zeta=0)=0 \tag{13}
\end{equation*}
$$

The eigensolutions of

$$
\begin{equation*}
\left(-\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \zeta^{2}}+R \zeta\right) \phi(\zeta)=\epsilon^{0} \phi(\zeta) \tag{14}
\end{equation*}
$$

are

$$
\begin{equation*}
\phi_{s}(\zeta)=N_{s} \operatorname{Ai}\left(\zeta / a-\epsilon_{s}^{0} / R a\right) \tag{15}
\end{equation*}
$$

with

$$
\begin{equation*}
a^{3}=1 / 2 R \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{s}^{0}=2^{-1 / 3} R^{2 / 3} a_{s} \tag{17}
\end{equation*}
$$

and Ai is the Airy function whose zeros a_{s} are given by Abramowitz and Stegun (1965). In equation (15), N_{s} is a normalisation factor.

Considering the term $-\frac{1}{2} \zeta^{2}$ in equation (12) as a 'perturbation', the first-order energy correction is given by the matrix element

$$
\left\langle\phi_{s}\right| \zeta^{2}\left|\phi_{s}\right\rangle=\int_{0}^{\infty} \phi_{s}^{*} \zeta^{2} \phi_{s} \mathrm{~d} \zeta
$$

The expression for this can be found in Castilho-Alcarás and Leal-Ferreira (1975) and it gives the contribution

$$
\begin{equation*}
\Delta \epsilon_{s}^{(1)}=-4(2 R)^{-2 / 3} a_{s}^{2} / 15 \tag{18}
\end{equation*}
$$

Now, for the second-order correction

$$
\Delta \epsilon_{s}^{(2)}=-\frac{1}{4} \sum_{m \neq s} \frac{\left\langle\phi_{s}\right| \xi^{2}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right| \zeta^{2}\left|\phi_{s}\right\rangle}{\epsilon_{m}^{0}-\epsilon_{s}^{0}}
$$

which, by using the matrix elements given in the appendix, can be written as

$$
\begin{equation*}
\Delta \epsilon_{s}^{(2)}=-72 R^{-2} \sum_{m \neq s}\left(a_{s}-a_{m}\right)^{-9} . \tag{19}
\end{equation*}
$$

therefore, up to second order, equations (17), (18) and (19) give the following expansion for ϵ :

$$
\begin{equation*}
\epsilon_{s}=-\frac{1}{2} R^{2}-2^{-1 / 3} R^{2 / 3} a_{s}-\frac{4}{15} a_{s}^{2}(2 R)^{-2 / 3}-72 R^{-2} \sum_{m \neq s}\left(a_{s}-a_{m}\right)^{-9} . \tag{20}
\end{equation*}
$$

Strictly speaking, the matrix elements we should calculate are of the form $\int_{0}^{2 R} \phi_{s}^{*} \zeta^{2} \phi_{s^{\prime}} \mathrm{d} \zeta$. But for large R, ϕ_{s} decays exponentially and therefore the expansion given in equation (20) is valid up to terms which decay exponentially for large R.

Let us recall that in this approximation the even and odd states are degenerate.

4. Padé approximants

With the expressions (8) and (9) valid for small R and expressions (10), (11) as well as (20) valid for large R, we can construct the two-point Padé approximants (Baker 1975) which interpolate the large and small box sizes.

For the harmonic potential we have first considered the one-point Pade approximants [2/5] and [3/4] constructed for $R^{2}\left(E_{+}^{(+)}(R)-\frac{1}{2}\right)$ and $R^{2}\left(E_{+}^{(-)}(R)-\frac{3}{2}\right)$, where for small R we use for $E_{+}^{(+)}$and $E_{+}^{(-)}$the expansions given by equations (8) and (9). These functions go to zero for $R \rightarrow \infty$ and this determines the choice of one-point Padé approximants with the numerator of smaller degree than the denominator.

In this way, we obtain approximate expressions for $E_{+}^{(+)}$and $E_{+}^{(-)}$valid for any value of R. For instance, with the help of the [3/4] Padé approximants, we have

$$
\begin{align*}
& E_{+[3 / 4]}^{(+)}(R)=R^{-2}[3 / 4]_{+}^{(+)}+\frac{1}{2} \tag{21}\\
& E_{+[3 / 4]}^{(-)}(R)=R^{-2}[3 / 4]_{+}^{(-)}+\frac{3}{2} \tag{22}
\end{align*}
$$

where

$$
\begin{equation*}
[3 / 4]_{+}^{(\pm)}=\frac{a_{0}^{(\pm)}+a_{1}^{(\pm)} R^{2}+a_{2}^{(\pm)} R^{4}+a_{3}^{(\pm)} R^{6}}{1+b_{1}^{(\pm)} R^{2}+b_{2}^{(\pm)} R^{4}+b_{3}^{(\pm)} R^{6}+b_{4}^{(\pm)} R^{8}} \tag{23}
\end{equation*}
$$

with

$$
\begin{array}{ll}
a_{0}^{(+)}=1.23370055 & a_{0}^{(-)}=4.934802201 \\
a_{1}^{(+)}=-7.2790821 \times 10^{-1} & a_{1}^{(-)}=-1.8351593 \\
a_{2}^{(+)}=0.13165136 & a_{2}^{(-)}=1.9228751 \times 10^{-1} \\
a_{3}^{(+)}=-7.7100105 \times 10^{-3} & a_{3}^{(-)}=-3.1394347 \times 10^{-3} \\
b_{1}^{(+)}=-0.18473544 & b_{1}^{(-)}=-6.7917470 \times 10^{-2} \tag{24}\\
b_{2}^{(+)}=-2.1124932 \times 10^{-2} & b_{2}^{(-)}=-1.0319577 \times 10^{-2} \\
b_{3}^{(+)}=-5.0262196 \times 10^{-3} & b_{3}^{(-)}=-1.8277512 \times 10^{-3} \\
b_{4}^{(+)}=4.3806023 \times 10^{-4} & b_{4}^{(-)}=-1.4695841 \times 10^{-4} .
\end{array}
$$

With equations (8) and (9) valid for small R and the asymptotic behaviour $E_{+}^{(+)} \underset{R \rightarrow \infty}{\longrightarrow} \frac{1}{2}$ and $E_{+}^{(-)} \underset{R \rightarrow \infty}{ } \frac{3}{2}$, respectively, for the two lowest levels in the case of the harmonic potential, we have constructed the two-point Padé approximants for this case, namely

$$
E_{+[4 / 3]}^{(\pm)}(R)=R^{-2}[4 / / 3]_{+}^{(\pm)}(z) \quad z=R^{2}
$$

where

$$
\begin{equation*}
[4 \| 3]_{+}^{(\pm)}(z)=\sum_{i=0}^{4} a_{i}^{(\pm)} z^{i}\left(1+\sum_{i=1}^{3} b_{i}^{(\pm)} z^{i}\right)^{-1} \tag{25}
\end{equation*}
$$

with

$$
\begin{array}{ll}
a_{0}^{(+)}=1.23370055 & a_{0}^{(-)}=4.934802201 \\
a_{1}^{(+)}=0.32277461 & a_{1}^{(-)}=2.705455087 \\
a_{2}^{(+)}=9.8911584 \times 10^{-2} & a_{2}^{(-)}=2.7413859 \times 10^{-1} \\
a_{3}^{(+)}=2.0021873 \times 10^{-2} & a_{3}^{(-)}=8.8155457 \times 10^{-2} \\
a_{4}^{(+)}=1.18564416 \times 10^{-3} & a_{4}^{(-)}=3.2456687 \times 10^{-3} \\
b_{1}^{(+)}=0.26163124 & b_{1}^{(-)}=5.4817903 \times 10^{-1} \\
b_{2}^{(+)}=2.7207697 \times 10^{-2} & b_{2}^{(-)}=2.6911356 \times 10^{-2} \tag{26}\\
b_{3}^{(+)}=2.3712832 \times 10^{-3} & b_{3}^{(-)}=2.1637792 \times 10^{-3} .
\end{array}
$$

For the inverted potential, with the help of expansions (8) and (9) and the asymptotic expansion (20), we have constructed the two-point [8/5] Pade approximant for $\epsilon(\omega)=R^{2} E(R)$, where $\omega=R^{4 / 3}$. Therefore $E_{-}^{(\pm)}(R)$ can be approximated by

$$
\begin{equation*}
E_{-[8 / 5]}^{(\pm)}(R)=R^{-2} \sum_{i=0}^{8} a_{i}^{(\pm)} \omega^{i}\left(1+\sum_{i=1}^{5} b_{i}^{(\pm)} \omega^{i}\right)^{-1}=R^{-2}[8 \| 5]_{-}^{(\pm)} \tag{27}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a_{0}^{(+)}=1.23370055 & a_{7}^{(+)}=3.123773 \times 10^{-3} \\
a_{1}^{(+)}=-5.5868223 & a_{8}^{(+)}=6.9041625 \times 10^{-5} \\
a_{2}^{(+)}=0.12502177 & b_{1}^{(+)}=-4.528507547 \\
a_{3}^{(+)}=-9.8911592 \times 10^{-2} & b_{2}^{(+)}=-0.1013388307 \\
a_{4}^{(+)}=0.287577643 & b_{3}^{(+)}=-2.7207663 \times 10^{-2} \tag{28}\\
a_{5}^{(+)}=6.4516815 \times 10^{-3} & b_{4}^{(+)}=-6.7600439 \times 10^{-3} \\
a_{6}^{(+)}=1.1856421 \times 10^{-3} & b_{5}^{(+)}=-1.3808325 \times 10^{-4}
\end{array}
$$

for the lowest even state and

$$
\begin{array}{ll}
a_{0}^{(-)}=4.934802201 & a_{7}^{(-)}=4.0749062 \times 10^{-4} \\
a_{1}^{(-)}=-10.31840951 & a_{8}^{(-)}=3.4966357 \times 10^{-6} \\
a_{2}^{(-)}=-0.89666561 & b_{1}^{(-)}=-2.090946929 \\
a_{3}^{(-)}=-0.16082045 & b_{2}^{(-)}=-1.8170244 \times 10^{-2} \tag{29}\\
a_{4}^{(-)}=0.29137699 & b_{3}^{(-)}=-3.9482997 \times 10^{-3} \\
a_{5}^{(-)}=2.533606 \times 10^{-3} & b_{4}^{(-)}=-8.4093686 \times 10^{-4} \\
a_{6}^{(-)}=4.1999771 \times 10^{-4} & b_{5}^{(-)}=-6.9932715 \times 10^{-6}
\end{array}
$$

for the lowest odd state.
In the next section, we will discuss the results.

Table 1. Odd parity levels for the attractive case.

$R=0.5$	$R=1$		$R=2$
19.774534178560	0 5.075	014976	1.764816438592
78.996921150976	6 19.899 69	4993	5.5846390781
177.693843822080	- 44.577	2271	11.7649821209
$315 \cdot 868612673536$	$6 \quad 79.121$	8506	20.403520681
$493 \cdot 521634054144$	$4 \quad 123.535$		31.50779934
$710 \cdot 653008064512$	2177.818		$45 \cdot 07897332$
967.262768984064	$4 \quad 241.971$		$61 \cdot 11734267$
1263.350931234816	6315.993		79.6230132
1598.917501620224	4 399.885		$100 \cdot 5960304$
1973.962483650560	0 493.646		$124 \cdot 0364162$
$R=3$	$R=4$	$R=5$	$R=6$
1.506081527088	1.5000146027	$1 \cdot 5000000035$	$5 \quad 1.499999999$
$3 \cdot 664219644$	$3 \cdot 501691537$	$3 \cdot 50000122$	3.49999999
6.473336615	5.539421796	$5 \cdot 50009871$	$5 \cdot 50000001$
10.303784984	7.793679610	7.50292799	$7 \cdot 50000126$
15.22938619 10	10.53368447	9.53657297	$9 \cdot 50004995$
21.25476356	13.88483224	11.71311518	11.50105682
28.37889360	17.8651483	14.1969859	13.5122967
36.6009303	22.4717383	17.0786432	15.5795469
45.9203811	27.7012072	20.3750716	17.804214
56.3369624	33.5513932	24.0826131	20.283577

Table 2. Even parity levels for the attractive case.

$R=0.5$	$R=1$	$R=2$	
4.951129323264	41.298	831928	0.53746120921
$44 \cdot 452073828864$	411.258	780608	$3 \cdot 399788240$
123.410710456832	323 31.005		$8 \cdot 368874427$
241.846458758144	$4 \quad 60 \cdot 6160$		15.776195797
399.760332976128	8 100.095		25.64733371
597.152524107776	$6 \quad 149.443$		37.98499813
834.023089029120	208.661		52.78974977
1110.372049494016	$6 \quad 277 \cdot 748$		70.0617616
$1426 \cdot 199415111680$	- 356.705		89.8011018
1781.505191022592	$2445 \cdot 532$		$112 \cdot 0078013$
$R=3 \quad R$	$R=4$	$R=5$	$R=6$
$0 \cdot 5003910828$	$0 \cdot 5000004907$	0.4999999999	- 0.4999999998
2.541127258	$2 \cdot 5002011795$	$2 \cdot 500000083$	2.499999998
4.954180470	$4 \cdot 509640989$	$10 \cdot 59619158$	$4 \cdot 50000000$
8.252874649	$6 \cdot 62112401$	$4 \cdot 50001263$	$6 \cdot 50000015$
12.62908715	9.09101312	$6 \cdot 50060235$	$8 \cdot 5000086$
$18 \cdot 1046609$ 9	12.130 69255	$8 \cdot 5114713$	10.5002477
24.6795474	15.7964496	12.9085151	12.5038832
32.3527108 20	20.0904022	15.5860867	14.5335934
41.1235002	25.0087733	18.6751217	16.6649505
50.9915430 30	$30 \cdot 5488073$	$22 \cdot 1777966$	19.0082654

5. Exact numerical results

We wish to consider first the variational method, with the trial functions given by equations ($6 a$) and ($6 b$), which corresponds to the diagonalisation of the Hamiltonian matrix whose elements are given explicitly by equation (7). This is done for several values of R and the corresponding first ten eigenvalues are shown in the tables presented below. The matrix dimension was varied in such a way to guarantee the convergence of the eigenvalues up to the precision shown in the tables.

In table 1 we give the results for the odd parity levels in the attractive case. These correspond to the case studied by Consortini and Frieden (1976). In table 2 we give the results for the even parity states with the boundary condition given by equation ($3 a$). In tables 3 and 4 we give the corresponding results for the repulsive case, which correspond to the case studied by Rotbart (1978).

Table 3. Odd parity levels for the repulsive case.

Table 4. Even parity levels for the repulsive case.

For all values of R considered, we diagonalise matrices of dimension 35×35, although for radius up to $R=1$, lower dimension matrices give the same precision shown in tables 1-4, in particular for the lower energy levels. For instance, 15dimensional matrices already give the same precision shown in table 4 for the first nine levels in the case $R=0.25$, and for the first eight levels in the case $R=0.5$.

In each case we have concentrated our attention on the first ten levels only.
We note that Consortini and Frieden (1976) only considered the odd parity states which correspond to the boundary condition equation ($3 b$).

6. Results from the perturbative, asymptotic and Padé approximants

In table 5 we give the numerical results for the two lowest energies obtained from the
perturbative expansions (8) and (9). By comparison with tables $1-4$, we see that the perturbative expansions (8) and (9) give very good results up to $R \sim 1 \cdot 0$.

For the harmonic potential expressions (10) and (11) are reasonable for the lowest levels ($n=0,1,2$) for $R \geqslant 3, R \geqslant 4$ and $R \geqslant 5$, respectively, if we compare them with the values given in tables 1 and 2 .

In table 6, we give the values of the first four levels obtained from the asymptotic expression (20) obtained for the repulsive case. We see by comparison with tables 3 and 4 that we obtain reasonable results even for the higher levels (the exception being those levels whose energy is close to zero, where large cancellations occur). If we introduce higher-order corrections to equation (20) we will improve the results.

In table 7, we give the numerical results obtained from the one-point Padé approximants [2/5] and [3/4] and the two-point Padé approximants [4//3] for the two lowest levels of the harmonic potential. They are described in § 4 (see equations (21), (22), (23) and (25)).

Table 5. Perturbative values for the two lowest levels in the attractive and repulsive cases.

R	$E_{+}^{(+)}$	$E_{+}^{(-)}$	$E_{-}^{(+)}$	$E_{-}^{(-)}$
0.25			19.735125	78.948602
0.5	4.951129	19.774540	4.918457	19.703873
1.0	1.298469	5.076001	1.167746	4.793327
2.0	0.548403	1.790769	0.00736	0.0659
3.0	1.244942	1.751890	1.8343	-0.8565

Table 6. Values of the first four levels in the repulsive case obtained from the asymptotic expansion (10).

R	E_{1}	E_{2}	E_{3}	E_{4}
5	-7.40662	-4.0677	-1.67087	0.17438
6	-12.163618	-8.2027	-5.24370	-2.8557
7	-17.96978	-13.4426	-9.98360	-7.12258

Table 7. Numerical results obtained from the one-point Padé approximants [2/5], [3/4] and the two-point Padé approximants [4//3] for the two lowest levels in the attractive case.

R	$E_{+[2 / 5]}^{(+)}$	$E_{+[3 / 4]}^{(+)}$	$E_{+[2 / 5]}^{(-)}$	$E_{+[3 / 4]}^{(-)}$	$E_{+[4 / 3]}^{(+)}$	$E_{+[4 / 3]}^{(-)}$
0.5	4.951129	4.951129	19.774534	19.774534	4.951129	19.774534
1.0	1.298469	1.298470	5.075595	5.075596	1.298467	5.075591
2.0	0.556250	0.531791	1.786651	1.787456	0.540352	1.768742
3.0	0.486835	0.503420	1.425783	1.430954	0.526426	1.571321
4.0	0.495493	0.509144	1.457521	1.462402	0.547220	1.695013
5.0	0.498653	0.508278	1.482623	1.487034	0.550096	1.768884
6.0	0.499570	0.505926	1.493123	1.496669	0.544950	1.778117
10.0			1.499718	1.500839	0.522777	1.670500
50.0			1.500000	1.500003	0.501077	1.508750
100.0			1.500000	0.500271	1.502203	

By comparison with the exact results given in tables 1 and 2 we note that for both parity levels up to $R \sim 3$, the results of the three Pade approximants are reasonable. For $R \geqslant 4$ the one-point approximants are better than the two-point Pade approximants.

Finally, in table 8 we give the numerical results for the two lowest levels of the repulsive case with the help of the two-point Padé approximants [8//5] given in equation (27). We see that in this case, by comparison with the exact results given in tables 3 and 4 , the two-point Padé approximants [8\|5] gives good results for $R \leqslant 1 \cdot 5$. But as we have seen before, the perturbative expansions (8) and (9) also give good results.

For $R \geqslant 1 \cdot 5$, the results are bad and for $R \geqslant 4$ the asymptotic expansion (20) gives much better results.

Table 8. Numerical results for the two lowest levels in the repulsive case obtained from the two-point Padé approximants [8//5].

R	$E_{-[8 / 5]}^{(+)}$	$E_{-[8 / / 5]}^{(-)}$
0.25	19.735124	78.94800
0.5	4.918567	19.703873
1.0	1.167768	4.793328
1.5	0.394722	1.873682
2.0	0.001146	0.659713
2.5	-0.338964	-0.126107
3.0	-0.801086	-0.817367
3.5	-1.484170	-1.55476
4.0	-2.476461	-2.428767
5.0	-5.578020	-4.876731
6.0	-10.175779	-8.621726
7.0	-16.087845	-13.86624

Acknowledgments

We thank Hiromi Iwamoto for her help in the numerical computations.

Appendix

Consider the equation

$$
\begin{equation*}
-\frac{1}{2} \phi^{\prime \prime}+R \zeta \phi=E \phi, \tag{A.1}
\end{equation*}
$$

for two values of E, E_{1} and E_{2}, with the corresponding eigenfunctions ϕ_{1} and ϕ_{2}. Let us multiply the equation for ϕ_{1} by $\zeta^{k} \phi_{2}^{\prime}$ and the equation for ϕ_{2} by $\zeta^{k} \phi_{1}^{\prime}$, integrate and sum both of them. In this way, we obtain

$$
\begin{align*}
-\int_{0}^{\infty} \zeta^{k} \frac{\mathrm{~d}}{\mathrm{~d} \zeta} & \left(\phi_{1}^{\prime} \phi_{2}^{\prime}\right) \mathrm{d} \zeta \\
& =-2 R \int_{0}^{\infty} \zeta^{k+1} \frac{\mathrm{~d}}{\mathrm{~d} \zeta}\left(\phi_{1} \phi_{2}\right) \mathrm{d} \zeta+2 \int_{0}^{\infty} \zeta^{k}\left(E_{2} \phi_{1}^{\prime} \phi_{2}+E_{1} \phi_{2}^{\prime} \phi_{1}\right) \mathrm{d} \zeta \tag{A.2}
\end{align*}
$$

For $k \neq 0$, after integration by parts, we obtain

$$
\begin{align*}
& k \int_{0}^{\infty} \zeta^{k-1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta \\
& \quad=2(k+1) R \int_{0}^{\infty} \zeta^{k} \phi_{1} \phi_{2} \mathrm{~d} \zeta+2 \int_{0}^{\infty} \zeta^{k}\left(E_{2} \phi_{1}^{\prime} \phi_{2}+E_{1} \phi_{1} \phi_{2}^{\prime}\right) \mathrm{d} \zeta \tag{A.3}
\end{align*}
$$

It is easy to show that the following identities hold (for $k \neq 0$):

$$
\begin{align*}
& \int_{0}^{\infty} \zeta^{k-1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta \\
&=\left.\zeta^{k-1} \phi_{1}^{\prime} \phi_{2}\right|_{0} ^{\infty}-(k-1) \int_{0}^{\infty} \zeta^{k-2} \phi_{1}^{\prime} \phi_{2} \mathrm{~d} \zeta+2 E_{1} \mathscr{M}_{k-1}-2 R \mathscr{M}_{k} \tag{A.4}
\end{align*}
$$

$\int_{0}^{\infty} \zeta^{k-1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta$

$$
\begin{equation*}
=\left.\zeta^{k-1} \phi_{1} \phi_{2}^{\prime}\right|_{0} ^{\infty}-(k-1) \int_{0}^{\infty} \zeta^{k-2} \phi_{1} \phi_{2}^{\prime} \mathrm{d} \zeta+2 E_{2} \mathscr{M}_{k-1}-2 R \mathscr{M}_{k} \tag{A.5}
\end{equation*}
$$

where we have introduced the notation

$$
\mathcal{M}_{k}=\int_{0}^{\infty} \zeta^{k} \phi_{1} \phi_{2} \mathrm{~d} \zeta .
$$

Expressions (A.4) and (A.5) are obtained by means of integration by parts and use of equation (A.1).

Summing equations (A.4) and (A.5) we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \zeta^{k-1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta \\
&= \frac{1}{2} \zeta^{k-2}\left[\zeta\left(\phi_{1}^{\prime} \phi_{2}+\phi_{1} \phi_{2}^{\prime}\right)-(k-1) \phi_{1} \phi_{2}\right]_{0}^{\infty} \\
&+\left(E_{1}+E_{2}\right) \mathcal{M}_{k-1}-2 R \mathcal{M}_{k}+\frac{1}{2}(k-1)(k-2) \mathcal{M}_{k-3} \tag{A.6}
\end{align*}
$$

Let us make the change $k \rightarrow k+2$ in equations (A.4), (A.5) and (A.6). We obtain

$$
\begin{align*}
& \int_{0}^{\infty} \zeta^{k+1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta=-(k+1) \int_{0}^{\infty} \zeta^{k} \phi_{1}^{\prime} \phi_{2} \mathrm{~d} \zeta+2 E_{1} \mathscr{M}_{k+1}-2 R \mathscr{M}_{k+2} \\
& \int_{0}^{\infty} \zeta^{k+1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta=-(k+1) \int_{0}^{\infty} \zeta^{k} \phi_{1} \phi_{2}^{\prime} \mathrm{d} \zeta+2 E_{2} \cdot \mathcal{M}_{k+1}-2 R \mathcal{M}_{k+2} \\
& \int_{0}^{\infty} \zeta^{k+1} \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta=\left(E_{1}+E_{2}\right) \mathcal{M}_{k+1}-2 R \mathscr{M}_{k+2}+\frac{1}{2} k(k-1) \mathcal{M}_{k-1} .
\end{align*}
$$

Introducing equation (A.6') in equations (A.4') and (A.5'), we obtain

$$
\begin{align*}
& \int_{0}^{\infty} \zeta^{k} \phi_{1}^{\prime} \phi_{2} \mathrm{~d} \zeta=\frac{E_{1}-E_{2}}{k+1} \mathscr{M}_{k+1}-\frac{1}{2} k \mathcal{M}_{k-1} \tag{A.7}\\
& \int_{0}^{\infty} \zeta^{k} \phi_{1} \phi_{2}^{\prime} \mathrm{d} \zeta=\frac{E_{2}-E_{1}}{k+1} \mathscr{M}_{k+1}-\frac{1}{2} k \mathcal{M}_{k-1} \tag{A.8}
\end{align*}
$$

We have used the fact that the brackets in equation (A.6) vanish.

Introducing equations (A.6), (A.7) and (A.8) in equation (A.3), we obtain
$\frac{2\left(E_{2}-E_{1}\right)^{2}}{(k+1)} \mathcal{M}_{k+1}=2 R(2 k+1) \mathcal{M}_{k}-2 k\left(E_{1}+E_{2}\right) \mathcal{M}_{k-1}-\frac{1}{2} k(k-1)(k-2) \mathcal{M}_{k-3}$,
valid for $k \geqslant 3$.
Similar relations to equation (A.9) have been obtained by Banerjee (1977), who used an operational method in order to derive them. Note, however, that his matrix elements are defined by integration over the whole interval $(-\infty,+\infty)$ while ours are on the half interval $(0, \infty)$.

Although for the derivation above we have used the fact that $k \geqslant 3$, it is easy to see that by using the same steps, equation (A.9) holds for $k=1,2$ also (by considering $\mathcal{M}_{-k^{\prime}}$ finite with $k^{\prime}=0,1,2, \ldots$). For instance, for $k=1$, we have

$$
\begin{equation*}
\mathcal{M}_{-}=\frac{6 R}{\left(E_{2}-E_{1}\right)^{2}} \mathscr{M}_{1} \tag{A.10}
\end{equation*}
$$

for $E_{2} \neq E_{1}$. Recall that in this case $\mathcal{M}_{0}=0$.
Now equation (A.2) for $k=0$ gives

$$
\begin{align*}
& -\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} \zeta}\left(\phi_{1}^{\prime} \phi_{2}^{\prime}\right) \mathrm{d} \zeta \\
& \quad=-2 R \int_{0}^{\infty} \zeta \frac{\mathrm{d}}{\mathrm{~d} \zeta}\left(\phi_{1} \phi_{2}\right) \mathrm{d} \zeta+2 \int_{0}^{\infty}\left(E_{2} \phi_{1}^{\prime} \phi_{2}+E_{1} \phi_{1} \phi_{2}^{\prime}\right) \mathrm{d} \zeta \tag{A.11}
\end{align*}
$$

and equations (A.5) and (A.6) for $k=2$ give

$$
\begin{align*}
& \int_{0}^{\infty} \zeta \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta=-\int_{0}^{\infty} \phi_{1}^{\prime} \phi_{2} \mathrm{~d} \zeta+2 E_{1} \mathscr{M}_{1}-2 R \mathscr{M}_{2} \tag{A.12}\\
& \int_{0}^{\infty} \zeta \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta=-\int_{0}^{\infty} \phi_{1} \phi_{2}^{\prime} \mathrm{d} \zeta+2 E_{2} \mathcal{M}_{1}-2 R \mathcal{M}_{2} \tag{A.13}
\end{align*}
$$

Summing these last two equations, we have

$$
\begin{equation*}
\int_{0}^{\infty} \zeta \phi_{1}^{\prime} \phi_{2}^{\prime} \mathrm{d} \zeta=\left(E_{1}+E_{2}\right) \mathcal{M}_{1}-2 R \mathcal{M}_{2} \tag{A.14}
\end{equation*}
$$

which, when introduced in equations (A.4) and (A.5), produces

$$
\begin{align*}
& \int_{0}^{\infty} \phi_{1}^{\prime} \phi_{2} \mathrm{~d} \zeta=\left(E_{1}-E_{2}\right) \mathscr{M}_{1} \\
& \int_{0}^{\infty} \phi_{1} \phi_{2}^{\prime} \mathrm{d} \zeta=\left(E_{2}-E_{1}\right) \mathscr{M}_{1} . \tag{A.15}
\end{align*}
$$

Introducing these expressions in equation (A.11), we obtain

$$
\begin{equation*}
\mathscr{M}_{1}=-\phi_{1}^{\prime}(0) \phi_{2}^{\prime}(0) / 2\left(E_{1}-E_{2}\right)^{2} \tag{A.16}
\end{equation*}
$$

For $E_{1}=E_{2}$ (and $\phi_{1}=\phi_{2}=\phi$), equation (A.15) give $\int_{0}^{\infty} \phi^{\prime} \phi \mathrm{d} \zeta=0$, and equation (A.11) reduces to

$$
\begin{equation*}
\int_{0}^{\infty} \phi^{2} \mathrm{~d} \zeta=\left[\phi^{\prime}(0)\right]^{2} / 2 R \tag{A.17}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\phi_{s}(\zeta)=N_{s} \operatorname{Ai}\left(\zeta / a-2 a^{2} \epsilon_{s}^{0}\right), \tag{A.18}
\end{equation*}
$$

with $a^{-3}=2 R, a_{s}=-2 a^{2} \epsilon_{s}^{0}$, we obtain from equation (A.17)

$$
\begin{equation*}
\int_{\mathrm{as}}^{\infty} \mathrm{Ai}^{2}(x) \mathrm{d} x=\left[\mathrm{A}^{\prime} \mathrm{i}\left(a_{s}\right)\right]^{2} \tag{A.19}
\end{equation*}
$$

which was found by Castilho-Alcarás and Leal-Ferreira (1975).
Expression (A.10) gives

$$
\begin{equation*}
\left\langle\phi_{s}\right| \zeta^{2}\left|\phi_{s^{\prime}}\right\rangle=\frac{3}{a^{3}} \frac{\left\langle\phi_{s}\right| \zeta\left|\phi_{s^{\prime}}\right\rangle}{\left(\epsilon_{s^{\prime}}^{0}-\epsilon_{s}^{0}\right)^{2}} \tag{A.20}
\end{equation*}
$$

and from (A.16), (A.17) and (A.19) we have

$$
\begin{aligned}
\left\langle\phi_{s}\right| \zeta\left|\phi_{s^{\prime}}\right\rangle & =-\frac{\phi_{s}^{\prime}(0) \phi_{s^{\prime}}^{\prime}(0)}{2\left(\epsilon_{s^{\prime}}^{0}-\epsilon_{s}^{0}\right)^{2}} \\
& =\frac{N_{s} N_{s^{\prime}} \operatorname{Ai}\left(a_{s}\right) \operatorname{Ai}\left(a_{s^{\prime}}\right)}{2 a^{2}\left(\epsilon_{s^{\prime}}^{0}-\epsilon_{s}^{0}\right)^{2}} \\
& =-\frac{1}{2} a^{-3}\left(\epsilon_{s^{\prime}}^{0}-\epsilon_{s}^{0}\right)^{-2} .
\end{aligned}
$$

References

Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
Baker G A Jr 1975 Essentials of Padé Approximants (New York: Academic)
Banerjee K 1977 Phys. Lett. 63A 223
Castilho-Alcarás J A and Leal-Ferreira P 1975 Lett. Nuovo Cim. 14500
Consortini A and Frieden B R 1976 Nuovo Cim. 35153
Rotbart F C 1978 J. Phys. A: Math. Gen. 112363

[^0]: \dagger Work supported by FINEP, Rio de Janeiro, under contract 522/CT.
 \ddagger On leave of absence from Instituto de Física, University of México, with financial support of FAPESP, São Paulo, Brasil.

